Towards a new french ETRS89 realization for the RGP network stations

Alain Harmel (IGN/SGN) Bruno Garayt (IGN/SGN)

The aim of this work was not to change the french ETRS89 realization "RGF93" definition (at least in the near future) which has a legal status, but to propose:

• A monitoring process of the french GNSS permanent network (RGP)

A cumulative solution expressed in IGS05 for velocity and coordinates estimation

• A set of coordinates expressed in ETRF2000 for the stations of the RGP (called ETRF2000(R05)-F) and a grid model based on collocation method from/to the RGF93 reference frame

The network and the data included in the analysis

EUREF 2008, Brussels Towards a new french ETRS89 realization based for the RGP network stations

The general processing strategy

• GPS processing : Bernese software 5.0

Daily/weekly **free** solutions (SINEX) loosely constrained (1m)

- Monitoring process using SGN combination programs and analysis tools
- Final solution using CATREF package and the minimum constraint approach

- A cumulative IGS05 solution (positions and velocities) is processed. A SINEX file is produced.

- Final coordinates are expressed in the IGS05 at 2008.0 reference epcoh.

- Velocities are constrainted to be the same within the same site
- Conversion to ETRS89 using Approach A formulae to compute a set of coordinates for the RGP stations defining a french realization of the ETRS89 system

The GPS processing strategy

The processing strategy adopted was those used at the IGN LAC. It is based on ionosphere-free double differences in a network approach using the Bernese 5.0 software and the following options/parameters:

Measurement models

- DE200 planetary ephemeris model
- Earth potential model : JGM3
- Ground/satellite antenna : IGS absolute/relative elevation-dependent phase center models
- Ocean loading model : FES2004
- Solid Earth tides applied (IERS Conventions 2003)
- Orbits and ERPs : IGS final products

Processing parameters

- Elevation dependant weighting
- Elevation angle cutoff : 3 degrees
- Troposphere :
 - mapping function : Wet Niell
 - zenith delays estimated once per hour for each station
 - daily horizontal gradient parameters

Estimated parameters

- Adjustment : Weighted least-squares algorithms
- Ambiguity resolution : QIF strategy. Solved ambiguities introduced to final solution
- Free solutions (loosely constrained) : the 7 daily solutions are combined to produce a weekly solution
- Troposphere : zenith delays estimated once per hour for each station and daily horizontal gradient

Minimun constraints over a set of selected stations of the ITRF2005/IGS05 stations

△ EUROPEAN IGS05 reference stations

+SITE/J	ΕD		
*CODE E	РТ.	DOMES T _STATION DESCRIF	
BRUS	А	13101M004 BRUSSELS, BELGIU	
CAGL	А	12725M003 Cagliari, Italy	
GRAS	А	10002M006 CAUSSOLS, FRANCE	
HOFN	А	10204M002 HOFN 10204M002	
MAS1	А	31303M002 MASPALOMAS, SPAI	
ΜΑΤΕ	А	12734M008 MATERA, ITALY	
METS	А	10503S011 KIRKKONUMMI (40	
ONSA	А	10402M004 ONSALA, SWEDEN	
PDEL	А	31906M004 PONTA DELGADA, F	
POTS	А	14106M003 POTSDAM, GERMANY	
SFER	А	13402M004 SAN FERNANDO (CA	
WSRT	А	13506M005 WESTERBORK, NETH	
WTZR	А	14201M010 KOETZTING, GERMA	
ZIMM	А	14001M004 ZIMMERWALD, SWIT	
-SITE/J	ΕD		

IGS05 : more consistent with the use of the receiver Absolute Phase Center Variation models (APCV)

EUREF 2008, Brussels Towards a new french ETRS89 realization based for the RGP network stations

A monitoring approach (1/2)

• To deal with discontinuities (antenna change / analysis) at reference epoch using IGS05 realization, the position differences from ITRF2005 have been introduced.

A program has been developped to propagate coordinates at selected epoch using an extended CRD Bernese format

RGP	IGS05		18-JUN-08 09:19 EPOCH: 2008-01-01 00:00:00				
LOCA	L GEODETIC DATUM:	IGS05					
NUM	STATION NAME	X (M)	Y (M)	Z (M)	FLAG	FROM	то
1	ACOR 13434M0011	4594489.6880	-678367.7079	4357066.1692	Е	99:237:00000	00:008:43200
2	ACOR 13434M0012	4594489.6824	-678367.7044	4357066.1735	Е	00:008:43200	01:353:43200
3	ACOR 13434M0013	4594489.6791	-678367.7029	4357066.1685	Е	01:353:43200	07:077:43200
4	ACOR 13434M0014	4594489.6779	-678367.7027	4357066.1652	Е	07:077:43200	
5	AIGL 10059M0011	4578299.9788	286538.9091	4418911.7911	Е	02:252:00000	

• Each daily solution is transformed at epoch in the IGS05 reference frame using a 7 parameters Helmert transofrmation, and converted to ETRS89 using the appropriate conventional transformation formulae (approach A)

A monitoring approach (2/2)

- For each station and solution, residuals are computed and plotted with respect to linear estimated velocity
- Outliers are detected and corresponding solution is rejected.
- When a jump is detected on a station, a discontinuity is setup and introduced for the final solution.
- Coordinates are propagated at minimum variance epochs.

Time series residuals

Remark: the 0 horizontal axis corresponds to the position of the station at minimum variance epoch

The CATREF software

EUREF 2008, Brussels Towards a new french ETRS89 realization based for the RGP network stations

Residuals analysis

GPS Week

EUREF 2008, Brussels Towards a new french ETRS89 realization based for the RGP network stations

Final coordinates and velocities

- The reference epoch for the final coordinates delivery is 2008.0
- For station with observation period *shorter than 2 years*, reference coordinates are estimated at *minimum variance epoch*, and velocity using the *ITRF2005 eurasian plate rotation model* is used to transfer position at the reference epoch.
- For stations with observation period longer than 2 years, estimated velocities are used to transfer estimated position at the reference epoch.

Comparison between IGS05 and ITRF2005 realizations has shown a difference of about 0.5 ppb for the network.

IGS05 is aligned with the ITRF2005 at a global level whereas we use a regional set of stations.

Consistency *at the cm level* between the ETRF2000(R05)-F reference frame and the neighbouring countries ETRS89 realizations

ETRF2000(R05)-F velocities

Horizontal

Vertical

EUREF 2008, **Brussels**

Towards a new french ETRS89 realization based for the RGP network stations

Grid model estimation by collocation method

EUREF 2008, Brussels Towards a new french ETRS89 realization based for the RGP network stations

For the RGP network, the following set of coordinates will be published:

- for post-processing applications:

IGS05 2008.0 coordinates and velocities

- for real-time positionning applications:

ETRF2000(R05)-F coordinates for EPN stations (EUREF-IP) legal **RGF93** coordinates for the private RTK network stations

- Analysis refinement is still necessary.
- From GPS week 1463, the network has been enlarged to a global one including the IGS stations from the core network.
- A global network reprocessing will be performed as soon as the IGS reprocessing files are available.
- A cumulative weekly solution using CATREF software and the minimal constraint approach, expressed in IGS05 and in the ETRS89 realization using the Approach A formulae, will be maintained for each new solution.

